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Absolute asymmetric induction studies in the crystalline state
are of wide interest since they occur spontaneously in the
absence of any outside chiral influence and are relevant to
theories concerning the prebiotic origin of natural chirality.1 The
development of photochemical reactions using chiral crystals
has potential for the synthesis of optically active compounds
that are difficult to prepare in other ways from the viewpoint
of chemo-, regio-, and enantioselectivity.2-4 In most cases,
solid-state photochemical reactions involve transformation of
achiral molecules into racemic products because of the absence
of a chiral environment for reaction through crystallization in a
racemic space group. For the special cases of achiral molecules
which could adopt a chiral conformation in the crystal lattice,
the molecular environment may be chiral and present an
opportunity for the induction of asymmetry into photoproducts,
and several successful “absolute” asymmetric syntheses involv-
ing unimolecular reaction have been reported.5-14 Here we
report a striking example of an absoluteâ-thiolactam synthesis
through a solid-state unimolecular photochemical reaction of
achiral N,N-dibenzyl-1-cyclohexenecarbothioamide1 which
occurs in a crystal-to-crystal manner.
The crystalline substrate1 was conveniently prepared by

thionation ofN,N-dibenzyl-1-cyclohexenecarboamide with Lawes-
son’s reagent.15 Recrystallization from chloroform-hexane
solution gave slightly yellow prismatic crystals, mp 73-74 °C.

X-ray crystallographic analysis indicated the chiral space group
P21, a ) 8.760 (2) Å,b ) 10.262 (3) Å,c ) 10.238 (3) Å,â
) 100.15 (2)°, V ) 905.9 (4) Å3, Z ) 2, F ) 1.178 g/cm3, and
µ(Cu-KR) ) 15.55 cm-1. Powdered crystals of1, well ground
and sandwiched by Pyrex glass plates, were irradiated with 500
W Hg lamp at 0 °C for 2 h, which led to the exclusive
production of optically activeâ-thiolactam, 1-benzyl-4-phenyl-
azetidine-2-thione-3-spiro-1′-cyclohexane2, in 96% yield at
58% conversion (Scheme 1). This material was purified by
column chromatography, and the structure was determined by
spectroscopy. As expected, the thiolactam2 showed optical
activity ([R]20D +109°, 94% ee), which was determined by
comparison of the [R]D value with enantiomerically pure
â-thiolactam2.16 This reaction exhibited good enantioselectivity
throughout the whole conversion range, where small differences
were detected in the ee value from 97 to 81% ee with increasing
conversion from 20 to 100%. It is worth noting that the solid-
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Figure 1. X-ray diffraction patterns of photochemical transformation
of crystals of 1: (a) crystals of1; (b) irradiated for 8 h (100%
conversion); and (c) recrystallized2.

Scheme 1
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state photoreaction proceeded without phase separation even
after 100% reaction conversion. The crystal-to-crystal nature
of the transformation was confirmed by X-ray diffraction
spectroscopy as shown in Figure 1. The diffraction patterns of
the crystals after completion of the photochemical transformation
are markedly inconsistent with those obtained after recrystal-
lization (Figure 1b,c), which implies that the photolyzed crystals
are in a metastable state.17 Optically activeâ-thiolactam that
shows reversed optical rotation was also obtained with similar
ee value by photolysis of enantiomorphous crystals of1 obtained
from another batch; each enantiomorph could be obtained
selectively and in bulk by seeding.8

Absolute asymmetric syntheses involving absolute-to-absolute
configuration correlation studies are of mechanistic interest since
they have much relevance to stereochemical features of the
reaction.10-13 Accordingly, the absolute configurations of both
prochiral substrate (+)-1, where the (+) symbol designates the
possibility of favoring (+)-2 by its irradiation, and enantio-
merically pure recrystallized (+)-2 were established by the
Bijvoet X-ray method. The Bijvoet measurements assigned the
helical configuration of (+)-1 demonstrated in Figure 2a.18,20

The stereochemistry of the chiral center in (+)-2was determined
as (R)-configuration.19,20 The stereochemical relationship before
and after the photoreaction is clearly consistent with a mech-
anism that involves the intermediacy of a diradical generated
by H1-atom abstraction, followed by cyclization with a mini-

mum amount of molecular movement affected by steric repul-
sion of neighboring molecules (Scheme 2). As shown in Figure
2a, the cyclohexenyl moiety is aimed properly at one of the
benzyl hydrogen atoms (H1). The distance of C1dC2‚‚‚H1 is
2.68 Å, less than the sum of the van der Waals radii for carbon
and hydrogen (2.90 Å), whereas that of C1dC2‚‚‚H2 is 4.06
Å, which indicates that solid-state photoreaction of1 leading
to â-thiolactam2 is topochemically allowed.3
In conclusion, this solid state photoreaction provides an ideal

example of absolute asymmetric induction since it leads to a
single product in high enantiomeric excess via a crystal-to-
crystal process. This photoreaction is the first example of an
absolute asymmetric synthesis involving hydrogen abstraction
by an alkenyl carbon atom and also provides a useful synthesis
of an optically activeâ-thiolactam.
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Scheme 2

Figure 2. The ORTEP drawing of the absolute configuration of (a)
thioamide1 and (b)â-thiolactam2.
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